
TEXTURE CACHING WITH MODIFIED QUAD-TREES 
 

PAUL NETTLE 
FLUID STUDIOS, INC. 

HTTP://WWW.FLUIDSTUDIOS.COM/ 
AUGUST 6, 1999 

 
 
OVERVIEW 
 

This document describes a texture caching method that attempts to maximize the use of 
texture RAM. By utilizing a dynamic caching mechanism, texture space is shared between 
textures of varying sizes, allowing a single texture to replace multiple smaller textures when 
needed, in an efficient manner. This algorithm minimizes wasted space and includes an 
efficient method for finding the most optimal texture (or group of textures) to replace, with the 
lowest risk of overwriting an important texture. 
 
Though generic enough to be used in a variety of applications, this algorithm has proven to 
be efficient. It can also be easily adapted to any of the standard 3D APIs (OpenGL, Glide & 
Direct3D) since it does not rely on texture allocations, except during the initialization phase. 
This also improves performance, as texture memory allocation tends to be inefficient for real-
time use. 

 
DESCRIPTION: TEXTURE STORAGE 
 

The algorithm pre-allocates a set number of surfaces (including all mip-levels) from the 3D 
API. These surfaces (called "Cache nodes") are only allocated once. They are used and re-
used throughout the duration of the application. This avoids any overhead of texture space 
allocation, which can be costly. This also adds a layer of abstraction from the algorithm and 
the underlying 3D API. 
 
The application may decide to allocate all of the available texture space to cache nodes. 
Each cache node can have its own individual size. In this document, we'll assume that our 
maximum texture size is 256x256. We'll also assume that each cache node is allocated at the 
maximum texture size, allowing any texture that the application might need to fit into any 
cache node. This gives us a texture-space balance across the cache. 
 
Each cache node is capable of storing NxM textures (where N is the width of the cache node, 
and M is the height of the cache node.) The organization of textures within cache nodes will 
be managed by the use of a modified quad-tree. 

 
DESCRIPTION: MODIFIED QUAD-TREE 
 

The algorithm employs a modified quad-
tree. This tree can be split in one of three 
ways: Horizontally (two children - stacked 
vertically), Vertically (two children - 
horizontally opposed) or the standard 
quad-tree split resulting in four children. 
Another modification to the tree is that the 
subdivisions are not always centered in the 
node, but may be offset in any direction 
(see figure 1.) 
 

http://www.fluidstudios.com/


By storing the textures into a structure of this type, we're given enough freedom to store 
textures of any size with high efficiency. Any unused space remains available for future 
texture additions to the cache. 

Figure 1: An example of the modified quad-
tree, showing each of the possible 
subdivisions. Deeper levels into the 
hierarchy are noted with a darker hue 



DESCRIPTION: CACHE INSERTIONS 
 

Remember that the cache is comprised of several cache nodes, and each node represents a 
hierarchical data structure in which the actual textures are stored. 
 
Insertions into this cache require visiting each cache node and traversing the quad-tree to 
locate a quad-tree node that is large enough to hold the new texture. If, during this process, 
we find an empty quad-tree node, we simply stop and use that node. 
 
However, with more use, the cache will become more balanced, forcing situations where it 
will be necessary to replace a quad-tree node. Note that each quad-tree node may comprise 
multiple children, and hence, multiple textures. So replacing a quad-tree node might mean 
replacing a group of textures. To maximize efficiency, we'll want to minimize any 
replacements of newer textures. Or, more specifically, we want to replace the oldest quad-
tree node (across the entire cache) that is just large enough to house the texture being 
inserted. Any excess space will then be marked as unused and will be made available for 
future cache inserts. 
 
Each quad-tree node will have an age associated with it (this might simply be the cache's 
access-count at the time the quad-tree node was created.) By the nature of the hierarchical 
structure of the quad-tree, a parent's age will always be older than its oldest child's age. This 
gives us very useful information when scanning through the list of cache nodes. 
 
As we scan cache nodes, traversing into each, we keep track of a 'best fit' quad-tree node 
and its age. As we continue to visit other cache nodes, we can quickly minimize traversal into 
these nodes by stopping when we reach a node that is newer than the current 'best fit'. This 
is the case, because traversing deeper into the tree will only uncover younger quad-tree 
nodes. Therefore, the more cache nodes visited the lower the probability for having to 
traverse deep into future cache nodes, increasing our performance with each visit to a cache 
node. To improve this probability, we choose cache nodes in random order during visitation, 
which balances the distribution of textures into the overall cache. 

 
TEXTURE MAPPING FROM THE CACHE 
 

Since multiple textures are stored in each cache node (or, texture surface to the 3D APIs) 
we'll need to modify the texture U/Vs when performing texture mapping, to account for the 
offset of the physical texture within the cache node. 

 
PROBLEMATIC AREA: TEXTURE WRAPPING 
 

Because we're sharing a single texture surface with multiple textures, there arises a problem 
when wrapping textures. For those applications requiring wrapping, they have a couple 
options. 
 
First, limit their wrapped texture to the full size of the cache node. This prevents the 
possibility of sharing that cache node with any other texture. 
 
Another option is to mark cache nodes as "wrapping" and only insert textures that fit perfectly 
into those nodes. The efficiency of the cache is reduced by a proportional ratio of wrapped 
cache nodes to non-wrapped cache nodes. 

 
PROBLEMATIC AREA: MIP MAPPING CACHE NODES 
 

When storing a texture into a quad-tree node, the mip-maps will also require storage. This 
leads itself into situations where a texture may cross boundaries with other textures in smaller 



mip-levels. At the lowest level of a 1x1 mip-map, all textures in a cache node will be blended 
together in a single pixel. So a minimum mip-level must be chosen. 
 
The number of pixels in the smallest mip-map determines the number of unique textures a 
cache node can store. Also, the minimum size of a texture is determined by dividing the 
dimensions of the cache node resolution by the resolution of the smallest mip-map. 
 
This creates a trade-off situation. The more mip-levels, the fewer unique textures that a 
cache node can store. This is a trade off between mip-mapping effectiveness and cache 
resolution. An example would be a mip-map count of 5 (smallest mip-map of 16x16). In most 
applications, this mip-map would be small enough, while allowing a minimum texture size of 
16x16 (anything smaller will result in wasted space.) 
 
This completely avoids the problem of unique textures blending together in smaller mip-
maps. 

 
 
 
 
 
 
 
 


